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ABSTRACT 

This study summarises the benefits of improving sea level forecasts for use in port operations from a 
shipping perspective. Maturation of operational sea level and ocean surface anomaly forecast 
services have provided the opportunity to utilise the skill that they offer to improve logistical 
operations at bulk goods terminals where short term Under Keel Clearance (UKC) are paramount 
to efficiency and safety. 

OMC International has been collaborating with the Bureau of Meteorology to evaluate the 
applicability of the OceanMAPS aggregate sea level forecasts that have now transitioned to an 
ongoing operational service. The development work to evaluate the forecasts was carried out on 
an experimental development version. The approach developed has proven to have the ability to 
utilise the improved accuracy of the new model.  

Furthermore, the availability of water level anomaly forecast models from other providers 
potentially offer non-correlated skill which can be incorporated into the model in an ensemble 
consensus style of assimilation. The different forcing sources, physical models and calculation 
architecture will be explored to understand the potential of combining heterogeneous numerical 
model forecasts in an operational setting. To that end, MetOcean Solutions Ltd have also provided 
operational water level forecasts to validate this hypothesis. 

This study outlines a stochastic framework for incorporating forecasts from multiple sources to 
maximise the benefits for the end user, foremost with the particular needs of deep draft vessel 
import and export shipping. 
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1 INTRODUCTION 

Bulk trade through bulk export ports can 
benefit from optimised vessel drafts derived 
from forecasts of environmental processes 
such as ocean swells and water levels, and 
thus improve cargo throughput.  

 

In this paper, OMC International aims to utilise 
existing sea level forecasting to cater to the 
needs of bulk port operations from an under-
keel clearance perspective. We will present a 
new approach that incorporates numerical 
forecasts with in-situ environmental 
observations on an operational basis.  

A good prognosis of water level allows 
operators to maximise the amount of cargo 
carried on each ship while maintaining safe 
vertical clearances. Every extra centimetre of 
draft mark translates to approximately 50 tons 
cargo for an average bulk carrier. This extra 
throughput can have significant flow-on 
economic benefits beyond the ship operator. 
However the ports needs to plan loading and 
sailing schedules and cargo capacity around 
these environmental restrictions.  

A typical bulk export operation sets a vessel’s 
cargo loading targets around 24 hours prior to 
sailing time, which is typically aligned with 
high tide. This is long enough for 
environmental conditions to change and 
observed water levels to deviate significantly 
from tide tables. Port operations rely on 
forecasts to plan and monitor these changes 
to ensure the appropriate loading of cargo to 
their vessels. The plan needs to account for 
maintaining safe under keel clearance (UKC) 
of their vessels during the transit from berth to 
deep water. Any adverse changes in water 
level predictions may result in sailing delays or 
cancelation, or even become a safety 
hazard.  

 

2 CHALLENGES IN PORT 
OPERATIONS 

Determining the maximum safe sailing draft of 
a vessel requires the accurate estimation of 
UKC for the planned sailing. Estimation of UKC 
is a multi-factored problem; variables include 
vessel characteristics (particulars and 
planned loading state, including draft), transit 
characteristics (e.g. channel depth the 
planned speed) and environmental 
conditions predicted for the time of sailing 
(wave, tides, and currents). To take these 
dynamic forcings into account, many 
Australasian ports use Dynamic UKC® 
(DUKC®) as a decision support system to 
predict UKC and safe draft and sailing time 
combinations. Tide and tidal anomaly 
forecasts intrinsically affect UKC, hence 
accurate water level predictions (tide plus 
anomaly) are a direct factor in the safe 
navigation of these depth-constrained 
waterways. Additionally, by reducing the 
uncertainty of water level forecasts, loading 
drafts can be proportionally increased, 
yielding significant economic benefits. 

2.1 ‘TIDES’ AND SEA LEVEL 

Variations in coastal water levels are 
generically referred to as ‘tides’. For the 
purposes forecasting these tides, useful 
distinctions can be made between sea level 
signals attributed to distinct oceanographic 
phenomena. The near ubiquitous 
decomposition of sea level of this nature is 
between the official harmonic tide 
predictions and the ‘tidal residual’ or 
anomaly.   

2.1.1 HARMONIC PREDICTIONS AND 
TIDE TABLES 

Tide tables are based on the harmonic 
analysis of long records of observed sea level.  
In Australia, the official National Tide Tables 
promulgated by the Australian Hydrographic  
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Service are primarily calculated by the 
Bureau of Meteorology Tidal Unit [1] using 
harmonic methods. 

As a sea level forecasting approach, 
standard harmonic methods are remarkably 
successful and robust. Tide table predictions 
can be produced years in advance and are 
fundamental to planning of port operations. 

Harmonic tide methods exploit the fact that 
at most coastal locations sea level variations 
are dominated by phenomena highly 
correlated with the relative motion of the 
Earth, Moon, Sun and other astronomical 
bodies.   This correlation reflects the significant 
role of gravitationally forced basin-scale long-
waves shoaling onto continental shelves.  It is 
notable however, that the relationship 
between observed sea level and tidal 
gravitation is complex and localised.   
Furthermore, not all of the signal regularly 
occurring at tidal frequencies, and usefully 
included in tide tables, are due to 
astronomical effects. 

Tide tables are stated to be valid for ‘average 
meteorological conditions’ [2] and storms are 
often a driver of relatively short-lived sea level 
deviations.   Storm impact need not be 
localised and shelf-scale phenomena can 
propagate deviations for many thousands of 
kilometres – notably along Australia’s 
southern shelves [3].  

 

Figure 1. Example of difference between observed sea 
level and official tide predictions in Southern Australia. 
Tide table predictions (black) are a good estimate of 
observed water level (blue), but the anomaly or ‘residual’ 
(green) can be a significant consider 

Figure 1 so that the 
deviation is apparent to pilots and operators. 
User-focussed statistical approaches can be 
used to account for the deviation [4], but 
ideally the water level anomaly should be 
foreseen and factored into the sailing plans. 

Towards predicting water level anomaly, the 
heterogeneous phenomena that force the 
deviations need to also be predicted and 
understood; no trivial task. In this study we 
were fortunate to work with two sophisticated 
forecasting models operating at distinct 
spatial scales and offering distinct prognostic 
information. 

 

2.2 OPERATIONAL WATER LEVEL 
FORECASTS 

Numerical fluid dynamic models of ocean 
circulation have become increasingly viable 
for operational use in recent decades, largely 
due to the combined advances in 
computational capacity and real-time 
oceanographic observations.  

Global ocean ‘weather’ phenomena such as 
mesoscale eddies, seasonal mass distribution, 
coastal currents and shelf waves are 
represented by the Australian Bureau of 
Meteorology’s OceanMAPS system. Daily 
forecasts of the global ocean state for 7-day 
lead times are produced operationally; 
exploiting satellite observations and data 
assimilation techniques in a manner 
analogous to global weather forecasting 
systems [5] [6].   

    
From this foundational capacity, a coastal 
sea level forecasting service has been 
developed that aggregates the sea level 
anomaly forecasts with standard tides, 
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barometric pressure and other data to 
enable direct comparison to real-time tide 
gauge observations [7]. 

At the finer localised spatial scale, Met 
Ocean Solutions (MSL) have solved a limited 
area sea level model for the Port of Geelong.  
Their nested Regional Ocean Modelling 
System (ROMS) computes atmospheric 
forcing for the South Australian continental 
shelf [8]. A 5 km resolution parent nest 
covering most of the south coast of Australia 
provides shelf scale residual water levels for a 
local 300 m Port Phillip Bay nest (Figure 2).  The 
importance of the rather large parent nest lies 
in considering the remote effects of coastal 
trapped wave propagation from west to east 
triggered by low pressure systems 
propagating along the coast, which has 
proven to greatly improve the residual 
elevations accuracy. The atmospheric 
forcing consists of winds and mean sea level 
pressure derived from a customised MSL 9 km 
WRF model.  

These two modelling systems target quite 
distinct representations of oceanographic 
phenomena, and may offer somewhat 
complimentary prediction insight. The 
challenge in forecasting is optimising the 
skillset of multiple numerical models in one 
combined prediction.  

 

Figure 2. Spatial representation of the current ROMS 
model representing Victoria and Port of Geelong. The mid 
and right two lower panels show the high resolution of the 
model. 

2.2.1 SEA LEVEL FORECASTS FROM THE 
OCEANMAPS GLOBAL MODEL 

OceanMAPS provides a generalised best-
estimate of the 3D physical state of the global 
ocean state with a primarily blue-water target 
(aimed primarily at forecasting ocean 
circulation away from the coast), from which 
sea level anomaly can be output.   The spatial 
representation of the Australian coastline is 
discretised at ~10km and intentionally 
excludes embayments such as Port Phillip in 
Victoria as indicated by Figure 3. 

 

Figure 3.   Spatial representation of the coast by current 
version of OceanMAPS.  Blue lines with fine steps show 
coastline in the ocean model grid; orange lines at coarse 
steps indicate equivalent coastline within the 
atmospheric forcing model. Note that some 
embayments are intentionally excluded from the model. 

Regardless, the system provides skilful 
prognosis of sea level anomalies within the 
Bay at synoptic time scales.  This reflects the 
significance of sea level variations at the 
open ocean entrance to the Bay. This skill is 
quantified against observed water levels at St 
Kilda by two distinct measures in Figure 4 and 
Figure 5.
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Figure 4.   Normalised error distributions for 1-hourly sea 
level at St Kilda, Victoria.  Conventional tidal residual 
distribution (black) is relatively broad with notable tail at 
upper end.  Forecast errors for the OceanMAPS-based 
aggregated sea level shows a much narrower 
distribution.  As expected for skilful numerical forecasts, 
the peakedness of distribution decreases with forecast 
lead time.  

 

Figure 5.  RMS error growth in daily bins for OceanMAPS-
based aggregate sea level forecasts (red) is better 
relative to conventional tidal residuals 
(black).  Comparison with forecasts based on 
persistence of observed residual at forecast base time 
(blue) show notable cross-over points. Persistence on 
average out-performs within the first day, but rapidly 
decays in value.    

 

2.2.2 SEA LEVEL FORECASTS FROM 
ROMS MODEL  

The MSL storm surge forecast model has 
demonstrated good skill in representing the 

residual water levels at Geelong. Table 1 and 
Figure 6 show the results of the model 
validation against measurements. Results 
accuracy does not seem to degrade 
significantly ahead of cycle initialization 
times. In fact, there seems to be a trend of 
decreasing bias going forward in the forecast 
horizon, which could be related to slight 
dissipation trends either in the wind forcing or 
the hydrodynamic model itself. However, 
those trends are negligible compared to the 

overall bias.  

 

Figure 6. Box and whisker plots presenting the MSL model 
BIAS statistics along specific storm surge 3 cm bins 
considering the 29 analyzed forecast cycles. 

The model results are more consistent for 
negative surges (lower water levels), and the 
negative BIAS noted on these particular 
events means the predictions are on the 
conservative side, which is a good outcome 
for under keel clearance purposes. There are 
relatively more model fluctuations on the 
positive (higher water levels) surges. Although 
the data population is limited to the number 
of forecast cycles (29) analyzed, Figure 6 
offers a good indication of the degree of 
confidence that can be expected for 
different magnitudes of the storm surge.  
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Table 1. Summary statistics for MSL nowcast/forecast and 
measurements comparison at Pt. Richards. MAE stands 
for mean absolute error and RMSE stands for root mean 
square error. Units in [m]. The “T+?h” refers to combined 
forecast cycles time series starting from a time (in hours) 
ahead of the cycle initialization.  

 

2.3 MAINTENANCE 

The dependence of operational decision 
support systems such as the DUKC® on third-
party service providers raises issues when 
employing local statistical downscaling 
methods to match model forecasts with 
observation sites. Notably, routine upgrades 
to numerical models such as OceanMAPS or 
ROMS can introduce unexpected changes to 
the forecast’s characteristics (in relation to 
observations). This can cause the predictions 
used in the estimation of Dynamic UKC® to 
change, sometimes with deleterious impact 
on operations. 

To manage the impact of these routine 
upgrades, providers will usually allow a period 
of overlap to allow the forecast 
characteristics to be evaluated and changes 
to be made as required. A statistical 
persistence-based forecast model is also 
incorporated into the system as a ground-
truth and back-up model. 

 

3 ADAPTIVE FORECAST SKILL 
EVALUATION & ASSIMILATION 

In order to operationally handle model 
changes in forecast model characteristics 

more gracefully and with less impact on users, 
these changes should be automatically 
detected and the statistical model should 
adapt in a short time frame.  

A stochastic approach is used to construct an 
adaptive model, where the forecasts are 
characterised as probability distributions, and 
retrospectively compared to the distribution 
of the target observations. The stochastic 
approach means that the prediction can be 
solved statistically, but not deterministically.  

The new approach consists of two parts: an 
adaptive forecast skill evaluation to provide 
the basis for statistical assimilation, and 
recursive Bayesian estimation (BRE) to 
dynamically combine (assimilate) the 
forecasts. The BRE model compares the most 
recent assimilated prediction with new 
information from the forecast models [9] [10]. 
This creates a feedback loop, so that the 
model output is no longer a deterministic 
product of the measured and forecast data 
inputs. This method is applied to a statistical 
persistence as well as any available externally 
generated numerical forecasts, such as those 
from OceanMAPS and ROMS.  

Tidal residuals are modelled with a normal 
Gaussian distribution. Implicitly, this also 
assumes that the forecasts are normally 
distributed. With this assumption allowed, 
Student’s t-distribution can be used to 
increase the “uncertainty” based on sample 
size, which is particularly helpful when only a 
small numbers of forecast packets are 
available. The forecasts are thus weighted 
less strongly than a direct evaluation would 
imply. Similarly, by limiting the number of 
packets that are evaluated to the most 
recent (e.g. two months), the model responds 
to the skill of the forecasts adaptively so that 
if the model changes are incorporated 
accordingly [11] [12] [13]. 

 NowCast T+24
h 

T+28
h 

T+72
h 

T+96
h Ave. 

BIAS 0.013 0.009 0.01 0.009 0.005 0.00
9 

MAE 0.049 0.045 0.045 0.046 0.044 0.05
5 

RMSE 0.065 0.055 0.056 0.058 0.054 0.05
8 
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4 RESULTS 

This study tested the robustness of the 
adaptive model for two months period. The 
test covers observations, astronomical tide 
and numerical forecast for the test period 
from for 2016-Oct-01 until 2016-Dec-02. This 
period observed 116 potential high water 
sailing opportunities.  

Figure 7 shows an example BRE application to 
numerical forecasts. The maroon and dashed 
green lines represent the forecasts from 
Bureau of Meteorology (OceanMAPS) and 
MSL (ROMS) for 14 Oct, 2016, respectively. In 
Figure 7both numerical forecasts under-
predict the observed residuals. BRE 
successfully detected and had elevated the 
transformed forecasts in the lower figure.  

 

Figure 7 shows an example time series of numerical 
forecast for 14 Oct 2016 and shows the updated BRE 
transformed forecasts from the Bureau of Meteorology 
and MSL. Note that the transformed forecasts are 
stochastic and illustrated as a range.  

The BRE transformed 64 Bureau of 
Meteorology packets and 56 MSL packets to 
be combined with the statistical predictions. 
For every new observation, a persistence 
based forecast is also produced. This 
persistence prediction is then assimilated with 
the numerical forecasts. Figure 8 shows an 
example assimilated prediction produced for 

14 October, 2016. The green shaded area 
shows the 1-sigma confidence interval. 

The assimilated water level predictions for 
Geelong are assessed using forecast horizon 
evolution. This approach assesses the 
potential impact of variations in water level 
predictions for the vessel’s scheduled transit 
as the time of sailing approaches. In this 
analysis, persistence predictions are used as a 
control case.  

 

Figure 8 shows an example assimilated prediction 
produced for 14 October, 2016. 

Numerical forecasts considerably improve on 
the persistence prediction in Figure 9.  The 
figure is a result of hourly issued conservative 
water level predictions for 116 different sailing 
times. Each prediction was aimed to be the 
best estimate. The assimilated forecast 
distribution is a lot tighter compared to the 
persistence one, thus the assimilation reduces 
the uncertainty in the predictions.  

Figure 9 compares BRE assimilated forecast against a 
persistence based model. Assimilation predictions 
include both the BoM and MSL numerical forecasts. 
Analysis consists of 116 Sails between 2016-Oct-01 and 
2016-Dec-02.
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In Figure 10, the range of prediction error as a 
function of forecast horizon is shown as 
shaded areas to compare the benefit of 
assimilating both the BoM and MSL forecasts 
(blue), as opposed to only having BoM 
forecasts (yellow) or only MSL (red). While the 
MSL forecasts introduce some positive bias, 
the complementary skill of the two forecasts 
reduce the range of uncertainty overall. 
When producing stochastic forecasts, the 
reduction in uncertainty is especially useful 
when producing conservatively biased 
estimates which are preferable for use in the 
DUKC® decision support system.   

 

Figure 10 shows forecast range and standard deviation 
from conservative predictions. The combined 
assimilation is compared against prediction that are 
assimilated with the Bureau of Meteorology and MSL 
forecasts only. Analysis consist of 116 Sails between 2016-
Oct-01 and 2016-Dec-02.  

Ideally combining multiple numerical 
forecasts that provide additional information 
should improve the overall prediction, and 
indeed this is shown in(Figure 10). The primary 
result is that the stochastic uncertainty is 
reduced with the two forecasts combined 
(with persistence) compared to either one 
alone. 

 

 

 

5 CONCLUSION 

This investigation concluded that a Bayesian 
recursive approach can evaluate and 
assimilate multiple forecasts of tidal residuals 
adaptively. The preliminary model 
successfully adapted seasonal changes in 
tidal residuals and improved water level 
predictions for operational use.  

The proof-of-concept model in this study 
successfully assimilates water level predictions 
with the aid of two numerical forecasts. This 
adaptive approach should prove to be 
invaluable for operational use. The approach 
successfully combined MSL’s Geelong and 
the Bureau of Meteorology’s Port Phillip Bay 
sea level anomaly forecasts.
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